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Figure 6.9: Sample cumulative distribution function (cdf) of the standardized poste-
rior data residuals for Reference Experiment I for two of the twelve brightness images
that have been assimilated (solid line). Also shown is the theoretical cumulative dis-
tribution function of the standard normal distribution (dashed line). For both images,
the sample cdf is close to normal. However, the residuals at the second observation
time do not pass the Kolmogorov-Smirnov test for normality at a 5% significance
level. The data residuals for one other observation time out of twelve also fail this
test. We attribute the deviation from normality to the nonlinearities in the hydrologic
model and the measurement process.
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6.1.6 Adjoint Variables

Figure 6.10 illustrates the temporal behavior of the adjoint variables. Time series of the
adjoint saturation and the adjoint soil temperature are shown for a representative pixel. For
comparison, we also plot the time series of the estimated brightness temperature together
with the (synthetic) observations. Note that in this experiment the observation pixels and
the estimation pixels coincide.

The forcing of the adjoint equation only consists of impulses at the observation times
(2.15). These impulses are proportional to the misfits between the observed and the esti-
mated brightness temperature. They are also proportional to the sensitivity derivative of
the brightness temperature with respect to the corresponding state variable. Starting from a
final condition of zero at the end of the assimilation interval (day 183), the adjoint equation
is integrated backward in time. The adjoint therefore equals zero until, going backwards
in time, we hit the last measurement time (day 181.6). At the last measurement time,
the misfit between the observed and the estimated brightness is negative for this particular
pixel. Since the soil saturation is inversely correlated with the brightness temperature, that
is ∂TB/∂Wg ≤ 0, the negative data misfit leads to a positive impulse for the adjoint satu-
ration. The opposite is true for the adjoint soil temperature. Further integration backward
in time causes the adjoint states to decay and grow exponentially according to the model
physics while they are repeatedly forced with data misfit impulses at observation times.

In Figure 6.10 we can also observe how the brightness misfit forcing affects the saturation
profile. Since the brightness temperature directly depends on the saturation in the top two
nodes at 0cm and −5cm via the top layer microwave emissivity and via the heat capacity, the
misfit forcing impulse leads to instantaneous effects in the corresponding adjoint saturation
components. In contrast, the lower components of the saturation do not directly influence
the brightness temperature. Therefore, the adjoint saturation of the lower nodes only
experience a delayed effect after the misfit forcing has been propagated downward through
the (adjoint) model physics.

Finally, Figure 6.10 also illustrates the much longer memory of soil moisture compared
to soil temperature. After each measurement time, the adjoint soil temperature decays
(backwards) to zero within twelve hours, whereas the adjoint saturation does not reach zero
before the misfit impulse at the next earlier measurement time comes in.

6.2 Reference Experiment II

To complement Reference Experiment I of Section 6.1, we now present another synthetic
experiment using different error statistics for the uncertain parameters and a different re-
alization, that is a different seed for the random number generator. The focus of Reference
Experiment II is on the model error. Unless otherwise stated, the inputs for this experiment
are the same as for Reference Experiment I. The initial condition is still uncertain, but with
somewhat reduced variance compared to Reference Experiment I. For this experiment, the
initial top node saturation varies between 0.3 and 0.65 (Figure 6.11). The sample mean is
0.52 and the standard deviation is 0.07. The correlation length for the initial saturation is
still 50km, and the initial saturation profiles are again hydrostatic.

The structure of the model error is the same as in Reference Experiment I, but the
standard deviations are drastically increased. The standard deviation for the top moisture
flux condition is now the equivalent of 50W/m2 in latent heat flux. Likewise, the standard
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Figure 6.10: Adjoint variables for Reference Experiment I. The top panel shows the esti-
mated brightness temperature for a representative observation pixel along with the (syn-
thetic) observations. Note that for this experiment, observation and estimation pixels coin-
cide. The second and the third panels show the adjoint saturation for the upper three nodes
and the lower four nodes, respectively. The last panel shows the adjoint soil temperature.
The adjoint equation is solved backward in time starting from zero at the final time (day
183). It is forced at observation times with the misfit between the observations and the es-
timates of the measured brightness temperatures. If the observed brightness temperature is
higher than the estimated brightness, the saturation adjoint variable will be forced towards
negative values, because the brightness temperature increases with decreasing saturation.
The opposite is true for the adjoint soil temperature. Note how the upper two nodes of
the adjoint saturation at 0cm and −5cm are directly and instantaneously influenced by the
data misfit forcing, while the rest of the nodes experience the forcing with a delay when the
shock is propagated through the model physics.
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deviation of the forcing terms in the force-restore equation and in the canopy energy balance
equation is set to 50W/m2. Moreover, the horizontal correlation of the model error has been
increased to 6km. This implies that the model errors are correlated over a few neighboring
pixels. This correlation increases the share of the process noise update to approximately
25% of the total CPU time (Section 8.1.2).

From the new realizations of the uncertain parameters we again derive (synthetic) true
fields and (synthetic) brightness data. The 5km resolution of the estimation and the ob-
servation pixels is unchanged, and we again use twelve brightness images (Figure 6.2 and
Section 6.1).

6.2.1 Estimation of the True Fields

Figure 6.11 shows the true, the prior, and the estimated top node saturation for Reference
Experiment II at six different times during the two-week period. As in Reference Exper-
iment I, the soil moisture estimates are greatly improved through the assimilation of the
brightness data. In Figure 6.12 we plot the area average errors in the top node saturation
with respect to the true fields. The time and area average error is now 2.9% in saturation,
compared to 1.4% in Reference Experiment I. This loss of quality in the estimate can be
attributed to the much stronger model errors.

The strong model error is also responsible for the rapid increase of the error in the
estimates at the end of the assimilation window. The last brightness image is assimilated
on day 181.6 (Figure 6.2). After this time, we essentially forecast the top node saturation,
which is of course very difficult to do with such strong model errors. Note that for this
experiment the area average prior error does not decrease over the two-week period. Since
we continuously add strong model error, the prior fields will not converge artificially to the
truth. Reference Experiment II therefore describes a much more realistic scenario.

The lower panel of Figure 6.12 shows the area average root-mean-square errors of the
prior and the estimated soil temperature. The stronger model error in the force-restore
equation leads to a higher area average prior soil temperature error of 1.6K compared to
0.37K in Reference Experiment I. Moreover, the estimate is only a slight improvement over
the prior guess, because L-band brightness temperature observations once a day are too
infrequent compared to the short memory of soil temperature.

Figure 6.13 examines the estimate of the model errors. For a representative pixel, we
plot the estimate, the prior, and the true model error time series. For comparison, we also
show the 24 hour moving average of the true model error. Recall that the prior model error
is zero. The top panel of Figure 6.13 shows the model error estimate for the moisture flux
upper boundary condition. While the true model error correlation time is 10 hours, we
only assimilate brightness updates once per day. Therefore the estimate is necessarily much
smoother than the true time series. But if we compare the estimate to the 24 hour moving
average of the true model error, we see that the estimate is in fact quite good.

As shown in the second panel of Figure 6.13, we get a poorer estimate for the model
error in the soil energy balance. For the model error in the canopy energy balance, shown
in the third panel, we do even worse. Obviously, the daily L-band brightness images do not
contain much information on the canopy states. Although we have only plotted the results
for a single pixel, we reach the same conclusion when we look at all pixels. Finally note
that all model error estimates vanish after the last observation time plus one correlation
time (day 181.6 plus 10 hours). The observations do not contain any information on times
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Figure 6.11: Top node saturation for Reference Experiment II. The first row shows the true
top node saturation at six different times during the assimilation interval. In the second and
third rows the prior and the estimate of the top node saturation, respectively, are depicted
for the same six times.
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Figure 6.12: Area average errors for Reference Experiment II. The root-mean-square
errors (rmse) of the prior and the estimated top node saturation and soil temperature
with respect to the (synthetic) true fields are shown. In the legend we also indicate
the temporal average of the area average rmse. Note that the soil moisture errors
are in terms of saturation. Obviously, the assimilation greatly improves the errors in
the top node saturation over the prior errors. On the other hand, daily brightness
observations are not enough to improve the prior guess of the soil temperature by
much.
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Figure 6.13: Model errors for Reference Experiment II. The estimated, the prior, and the
true model errors for a representative pixel are shown. For comparison, we also plot the 24
hour moving average of the true time series. The upper panel shows the model error in the
upper moisture flux boundary condition. Considering the difference in time scales between
the true model error variability and the frequency of the brightness data, we get a very
good estimate. In contrast, we have somewhat less skill in estimating the model error in
the soil energy balance (second panel). We do even worse on the model error in the canopy
energy balance (third panel).
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that are further into the future.

For the subsurface nodes, we again get the same excellent estimates as for the surface
node. To illustrate this point, Figure 6.14 shows the estimated, the prior, and the true profile
saturation for a representative pixel. However, the limitations discussed in Section 6.1.3
still apply. In summary, we get an overly optimistic profile estimate because we use a fixed
shape for the initial profile and because the assimilation window is too short for significant
divergence to occur between the shape of the prior and the true profiles.

6.2.2 Reduced Objective Function and Posterior Data Residuals

Figure 6.15 shows the reduced objective function versus the iteration number. The con-
verged value of the reduced objective is 5985 and lies within 1.5 standard deviations from
the expected value of 6144. From the reduced objective function we have therefore no
indication that the assimilation was not optimal.

Finally, a close look at the posterior data residuals yields qualitatively the same results
as for Reference Experiment I (Figures 6.7, 6.8, and 6.9). The raw mean for all residuals
with a 95% confidence interval is 0.04 ± 0.11K. For all but one of the residual brightness
images we find a mean whose 95% confidence interval includes zero. The slight bias observed
in the Reference Experiment I is absent here. The residuals are uncorrelated in space and
in time, but the residuals of the individual images are not exactly normally distributed. We
can again attribute this deviation to the nonlinear nature of the problem.

6.3 Downscaling Experiments

We now investigate the downscaling capability of the assimilation algorithm. As outlined
in Section 4.7, we can effectively increase the resolution of the brightness images by making
use of the fact that the inputs to the hydrologic model are available at a finer scale. The
additional information is implicitly deduced from our knowledge of soil and land cover
parameters as well as from the meteorologic forcings.

In the downscaling experiments, we use the same setup as in Reference Experiment I.
In particular, we continue to estimate the land surface states at 5km resolution. In contrast
to the reference setup, we now generate brightness observations at resolutions of 10km and
20km, respectively. In the former scenario, each observation pixel contains four estima-
tion pixels. Consequently, we call this setup the (1:4) downscaling scenario. In the case
of brightness observations at 20km resolution, there are 16 estimation pixels within each
observation pixel, and we call this setup the (1:16) downscaling scenario.

6.3.1 Estimation of the True Fields

In Figure 6.16, we compare the estimates of the top node saturation for both downscaling
scenarios. For comparison, the true and the prior top node saturation are shown in the first
two columns. All columns depict the saturation fields for the same three times during the
experiment. For each downscaling estimate, we also show the outline of the corresponding
observation pixels.

In both downscaling scenarios, the algorithm can adequately estimate the large-scale
spatial distribution of the saturation. More importantly, structures at scales well below
the scale of the observations can be resolved satisfactorily (Figure 6.16). This means that
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Figure 6.14: Profile saturation for Reference Experiment II. The true, the prior, and
the estimated profile saturation are shown at six different times during the assimilation
interval. Note that the profile estimates are overly optimistic because of the setup of
the synthetic experiment.
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Figure 6.15: Objective function versus iteration number for Reference Experiment II.
The reduced objective function after convergence is 5985. The number of data points
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the number of linear combinations of representer functions that needed to be eval-
uated during the conjugate gradient iteration of the indirect representer approach
(Chapter 8).
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